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Abstract
Glaucoma is a chronic disease that threatens eye health and can cause permanent blindness. Since there is no cure for glaucoma,
early screening and detection are crucial for the prevention of glaucoma. Therefore, a novel method for automatic glaucoma
screening that combines clinical measurement features with image-based features is proposed in this paper. To accurately extract
clinical measurement features, an improved UNet++ neural network is proposed to segment the optic disc and optic cup based on
region of interest (ROI) simultaneously. Some important clinical measurement features, such as optic cup to disc ratio, are
extracted from the segmentation results. Then, the increasing field of view (IFOV) feature model is proposed to fully extract
texture features, statistical features, and other hidden image-based features. Next, we select the best feature combination from all
the features and use the adaptive synthetic sampling approach to alleviate the uneven distribution of training data. Finally, a
gradient boosting decision tree (GBDT) classifier for glaucoma screening is trained. Experimental results based on the ORIGA
dataset show that the proposed algorithm achieves excellent glaucoma screening performance with sensitivity of 0.894, accuracy
of 0.843, and AUC of 0.901, which is superior to other existing methods.
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1 Introduction

Glaucoma is a common chronic disease that threatens eye
health, and it is the second leading cause of blindness world-
wide [1]. According to the World Health Organization
(WHO), approximately 65 million people around the globe
are suffering from glaucoma [2]. Since the vision loss caused
by glaucoma is irreversible and the symptoms are impercep-
tible in the early stages, glaucoma is considered to be “silent
theft of sight” [3]. Although existing medical technology can-
not cure glaucoma, early screening and corresponding treat-
ment can help patients avoid vision loss and reduce the prob-
ability of blindness effectively.

One common clinical glaucoma detection technique is in-
traocular pressure (IOP) measurement. Increasing IOP is one
of the symptoms of glaucoma; it can lead to optic nerve dam-
age, visual field defects, and even blindness [4]. Therefore,
IOP is considered as one of the important indicators of glau-
coma. However, this method is inadequate because the IOP of
some patients with glaucoma is normal [5]; thus, IOP mea-
surement cannot detect those special cases. Another common
method for screening glaucoma is optic nerve head (ONH)
examination which relies on clinical ophthalmologists to
screen glaucoma based on retinal images [6]. When screening
glaucoma, ophthalmologists often enhance the retinal image
manually and diagnose eye disease according to their own
experience with domain skills. Since the diagnostic process
is inefficient and time-consuming, the above two methods are
not suitable for population screening. Thus, the design of an
automatic glaucoma screening system is very helpful and nec-
essary for early and mass detection.

On the other hand, with the development of computer and
artificial intelligence, automatic glaucoma screening based on
the processing of digital retinal images can achieve reliable
accuracy and efficiency, and it is applicable for large-scale
screening. Glaucoma is usually accompanied by pathological
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phenomena, such as nerve retinal edge erosion [7, 8] and
increased optic cup, and these pathological phenomena main-
ly occur in ONH. Thus, the analysis of ONH can obtain the
basis for glaucoma screening as well.

Automatic glaucoma diagnosis methods based on fundus
images consist of two main categories: clinical measurement
analysis and image-based feature analysis. Clinical measure-
ment analysis refers to the measurement of some glaucoma-
associated geometrical features, such as the optic cup to disc
ratio (CDR) [9], the diameter of the optic disc [10], and area of
the optic cup. These characteristics are highly correlated with
glaucoma screening, and CDR is the most important one
which has been recognized by clinical ophthalmologists. In
the color retinal image, the optic disc (OD) can be easily
identified by the naked eye because it is usually displayed as
a bright yellow oval area. However, the optic cup (OC) is
relatively difficult to distinguish; it exists in the center of the
OD and appears as the brightest oval or round region. Except
for the OC area, the remaining marginal region in the OD is
the neuroretinal rim. According to clinical experience and
domain knowledge, a larger CDR implies a higher probability
of suffering from glaucoma and vice versa, as shown in Fig. 1.
Thus, many automatic glaucoma detection methods based on
clinical features (e.g., CDR) have been proposed.

Segmenting the OD and OC from fundus image is para-
mount for these methods, and then glaucoma is identified with
clinical measurements. For instance, Yin et al. [11] performed
segmentation using circular Hough transformation and then
measured CDR.Morphological operations [12] were employed
by Nayak et al. [13] for the segmentation of OC and OD, and
the CDR is measured to assess glaucoma risk. Cheng et al. [14]
proposed a superpixel classifier for classifying each superpixel
to distinguish the OD and OC from the fundus image and the
CDR was obtained to screening glaucoma.

However, the measurement of clinical features is heavily
dependent on the segmentation results, and the quality of fun-
dus image can greatly affect the measurement results, so the

accuracy of glaucoma screening using only clinical measure-
ment features has reached a bottleneck. Therefore, many
image-based methods have been proposed for glaucoma de-
tection. Noronha et al. [15] trained classifiers for automatic
glaucoma detection by extracting HOS cumulants from the
fundus images. Besides, linear discriminant analysis (LDA)
was adopted for feature reduction to make the classifier
achieve better performance. In [16], the Gabor transform
was combinedwith a support vector machine (SVM) classifier
for glaucoma screening. Dua et al. [17] employed two-
dimensional discrete wavelet transform to extract hidden fea-
tures from fundus images, and discussed the effectiveness of
different feature selection methods for machine learning clas-
sifiers. Haleem et al. [18] designed a regional image features
model (RIFM), which divides the OD area image into differ-
ent parts and extracts multiple higher-order features of each
part, and the contributions of each region to the glaucoma
classification are compared. Besides, some important geomet-
ric features are also used to improve classification accuracy.

In recent studies, deep learning technique has been
proved to be effective in the image segmentation [19] and
classification, especially in biomedical image analysis. For
OD or OC segmentation, an improved version of U-Net
was proposed in [20]. Fu et al . [21] proposed a
convolutional neural network (CNN), named M-Net,
which realizes the simultaneous segmentation of OD and
OC. For glaucoma screening, in [22], a six-layer CNN
architecture was designed to obtain glaucoma diagnosis
result from the input fundus image directly. Diaz-Pinto
et al. [23] employed different CNN models, such as VGG
series network, InceptionV3, and ResNet50, to perform
glaucoma classification comparison experiments.
Experiments adopted the transfer learning method based
on ImageNet-trained weights, and the results indicated that
the ImageNet-trained models can effectively improve the
performance of glaucoma recognition. Although the CNN
model can automatically extract the image features, these

(a) Glaucoma (b) Normal

Fig. 1 Comparison of OD in
glaucoma and normal fundus
image. The OC is represented
with the red contour and OD is
shown with the blue contour in
both images. The vertical
diameter of OC in glaucoma
image is significantly larger than
that in normal images
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features only focus on the visual aspects of the image rath-
er than the clinical information and lack clinical interpret-
ability which is indispensable for glaucoma screening.

In this paper, we proposed a novel automatic glaucoma
screening method combining both clinical measurements
and image-based features. Different from the existing
methods, increasing field of view (IFOV) feature model was
proposed to extract hidden image-based features, such as tex-
ture features and Gabor transform features. Besides, some
important clinical measurement features are also extracted af-
ter the segmentation of the OD and OC. The accuracy of
glaucoma detection has been significantly improved. Our con-
tributions include:

1) A neural network named CP-FD-UNet++ is proposed.
The network is an improved UNet++ [24] and contains
a nested U-Net architecture, mixed loss function, and the
connection path at the encoder side. The different scales
of information input and feature map sharing can be real-
ized through the connection path, and it is beneficial for
the performance of OD and OC simultaneous segmenta-
tion. The mixed loss function is the combination of focal
loss [25] and dice coefficient, which can eliminate the
impact of data imbalance.

2) We proposed the increasing field of view (IFOV) feature
model to extract the image-based features. The visual field
range of four different scales from the cup region to the
global fundus image was defined; hidden visual features of
gray-level co-occurrence matrix (GLCM) and Gabor trans-
form are extracted in these regions. Both clinical measure-
ment features and invisible features obtained from image
transformation are taken for glaucoma detection.

3) We employed an adaptive synthetic sampling
(ADASYN) algorithm [26] to lessen data imbalance
problem. Finally, we found that gradient boosting deci-
sion tree (GBDT) classifier with ADASYN algorithm
can achieve the best performance for glaucoma detection.

2 Methods

The framework of the proposed glaucoma screening method
is shown in Fig. 2. We locate OD and crop the ROI from a
fundus image first, and then OD and OC are segmented from
the ROI simultaneously. The next step is feature extraction,
and these extracted features will be used for supervised clas-
sification after selection and ranking.

2.1 Optic disc localization and ROI cropping

OD and OC only occupy a tiny part of the retinal image which
will cause a heavy bias between the target and the

background. If OD and OC segmentation are based on the
entire fundus image, the result will definitely be seriously
affected. Generally, the resolution of the original retinal fun-
dus image is very high, and inputting the original image di-
rectly into the network will cause the calculation to increase
exponentially and seriously influence the segmentation effi-
ciency. If the fundus image is input into the network after
being scaled, the loss of pixel information caused by the scal-
ing will also affect the accuracy of the segmentation result.
Therefore, we segment OC and OD based on ROI to avoid the
above problems. We positioned the OD and then cropped the
ROI from the retinal image based on the localization results. A
new OD localization method is proposed based on our past
work [5], which includes:

Step 1: Brightest region extraction
Step 2: Vessels segmentation
Step 3: Confidence calculation of the sliding window

In step 1, the morphological transformation (top-bottom-
hat) is performed to improve the gray-level fundus image con-
trast, as shown in Fig. 3b. As the brightest area of the retinal
image, OD occupies approximately 6.5% of the full image.
Thus, a threshold is set based on 6.5% of the maximal pixel
value of the improved gray-scale retinal image, and then the
brightest region is extracted by threshold segmentation, as
shown in Fig. 3c.

In step 2, the bottom-top-hat transformation is performed to
segment the blood vessels directly in the green channel of
fundus image. Before segmentation, the green channel needs
to be processed by contrast limited adaptive histogram equal-
ization (CLAHE) to obtain better segmentation results, as
shown in Fig. 3d.

In step 3, the improved gray-level retinal image and the
vessel image are combined to obtain a fusion image, as shown
in Fig. 3e. The fusion image and the brightest region image
were then scanned by a sliding window to calculate the aver-
age intensity score; the sliding window with the highest score
is regarded as the OD location, as shown in Fig. 3f.

According to the OD localization result, a square area with
width 2 times of the OD diameter is extracted as ROI finally.
Figure 4 shows an illustrative example.

2.2 Automatic segmentation of OD and OC

In [24], UNet++, as a powerful architecture, is adopted for
medical image segmentation. Inspired by U-Net [27] and
UNet++, we propose an improved UNet++ network struc-
ture, called CP-FD-UNet++, for the simultaneous segmen-
tation of OD and OC based on ROI. It includes a nested U-
Net architecture, mixed loss function, and the connective
path at the encoder side. Figure 5 shows the proposed net-
work architecture. Specifically, the network contains the
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following: (i) a nested U-Net CNN network. Different from
U-Net, the encoder and decoder of our proposed network
are connected through nested dense convolutional blocks
rather than skip connections. Thus, the semantic difference
between the feature maps of the encoder and decoder can

be diminished [24]. (ii) The connection path at the encoder
side. It can enable different layers of the encoder to obtain
multilevel information input and feature maps sharing. (iii)
Mixed loss function combines the focal loss with the dice
coefficient.

Fig. 2 Framework of proposed
glaucoma classification method

Fig. 3 Steps of OD localization. aOriginal fundus image. b Enhanced gray-scale retinal image. cBrightest area image. dVessel image. e Fusion image. f
OD localization result
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(i). A nested U-Net convolutional neural network U-shaped
fully convolutional neural network possesses reliable capabil-
ities and powerful effect in terms of semantic segmentation,
especially in medical image segmentation. The main structure
of the U-Net consists of a set of down-sampled encoder paths
and up-sampled decoder paths, these paths employ convolu-
tion blocks to generate feature maps and automatically extract
semantic features. In the original U-Net, the encoder and de-
coder paths are bridged by skip connections; the output feature
maps of the encoder are copied and concatenated to the feature
maps of the corresponding layer decoder. However, skip con-
nections directly concatenate the shallow encoder feature
maps to the deep decoder feature maps, which will cause a
certain semantic gap. To solve this problem, skip connections
can be changed to nested dense convolutions. According to
[24], we insert 3, 2, and 1 convolution modules between the

first, the second, and the third layer encoder-decoder paths,
respectively. Each convolution module consists of two con-
secutive 3 × 3 convolution kernels. Similar to DenseNet [28],
the input feature maps of each convolution module are com-
posed of the output of all previous modules on the same layer
encoder-decoder path and the upsampling output of the corre-
sponding module on the next layer encoder-decoder path, as
shown in Fig. 5. Thus, the features at all gradations can be
integrated in a superimposed manner, which increases the re-
use rate of features. Besides, the nested dense convolution can
avoid the semantic gaps caused by skip connection between
the encoder and the decoder, which enables the net to fully
understand the abstract semantic features and construct the
details of the semantic segmentation target more accurately.
Therefore, the accuracy of segmentation results can be greatly
improved.

Fig. 4 OD localization result and
ROI

Fig. 5 The network architecture of CP-FD-UNet++
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(ii). Connection path In view of the powerful feature extraction
and reuse capabilities of nested U-Net, we propose a new
feature connection method applied at the input of the encoder
to make the best use of UNet++. This method concatenates the
input feature maps of the previous encoder with its corre-
sponding output feature maps, and the concatenated results
are employed as the input of the next encoder. Therefore, it
enables the encoder to obtain multi-scale information input
and realizes feature map reuse.

(iii). Mixed loss function The OD and OC only occupy a little
portion of the fundus image or ROI, which leads to a serious
imbalance between the segmentation target and the back-
ground. Besides, the OC is more difficult to distinguish com-
pared with OD; it may make the network biased towards OD
and cause the distortion of OC. To eliminate the impact of data
imbalance, we propose to combine focal loss [25] with the
dice coefficient as the loss function. Focal loss can effectively
improve the accuracy of hard-to-distinguish samples, and the
combination with dice coefficient can reduce the impact of
unevenly distributed data. The mixed (FD) loss function is
represented as:

LFD ¼ λ1 Ldiscfocal þ Lcupfocal

� �þ λ2 Ldiscdice þ Lcupdice

� � ð1Þ

Lfocal ¼ − ∑
N

i¼1
α⋅ qi
� �γ ⋅logpi; Ldice ¼ − ∑

N

i¼1

2 pi⋅qij j
pij j2 þ qij j2 ð2Þ

where Ldiscfocal and L
cup

focal represent the focal loss of OD and
OC respectively and Ldiscdice and Lcupdice are the dice coeffi-
cient loss. pi refers to the probability that pixel i is predicted as
the target label value, and qi represents the ground truth label.
λ1 and λ2 in Eq. (1) are weigh parameters to balance the
contribution of two different loss functions. α in Eq. (2) is
the balance coefficient used to balance the unevenness of the
samples. γ in Eq. (2) can reduce the loss of easy-to-classify
samples so that the model will pay more attention to the dif-
ficult and misclassified samples. Since the values of dice co-
efficient loss and focal loss are in the same order of magni-
tude, and the two loss functions are equally important in OC
and OD segmentation, both λ1 and λ2 are set to 0.5.
According to [25], the best results can be obtained by setting
α and γ to 0.25 and 2, respectively.

Figure 6 shows the simultaneous segmentation result using
the proposedmodel. The CP-FD-UNet++ model can automat-
ically extract semantic features from the input fundus image to
segment OC and OD. Experimental results show that the seg-
mentation accuracy of the model is close to the level of clinical
ophthalmologists, while the operation time of the model is far
less than that consumed by doctors in manual annotation.
Thus, the model has both excellent accuracy and real-time
performance. Besides, the segmentation network also has a
low implementation cost, which makes the model have the

potential for clinical application. Moreover, the proposed
model can make full use of the extracted semantic features
due to its unique network structure, which enables the network
to perform OC and OD segmentation under different imaging
conditions and individual differences. Therefore, the CP-FD-
UNet++ model has excellent clinical reliability and can be
effectively applied to OC and OD segmentation under clinical
conditions.

2.3 Feature extraction

In this paper, we propose a feature extraction method combin-
ing both clinical measurement features which inspired by do-
main knowledge and image-based features for automatic glau-
coma screening. Different from the existing methods, increas-
ing field of view (IFOV) feature model was proposed to ex-
tract the image-based features. In this method, the hidden fea-
tures of the different receptive fields are considered; thus, the
extracted features have wider coverage and can give more
reliable and accurate glaucoma screening results. Figure 7
shows the feature extraction flowchart.

2.4 Clinical measurements

Neuroretinal rim (NRR) (see the green area in Fig. 8b) refers
to the region between OC and OD; it is determined to consist
of four quadrants, i.e., inferior (I), superior (S), nasal (N), and
temporal (T). The ISNT rule is a common basis for judging
whether the NRR shape is normal in the clinical diagnosis of
glaucoma. It specifies that the thickness value of the I quadrant
is the largest while the T quadrant is the thinnest. Besides, the
thickness of the S quadrant is greater than that of the N quad-
rant. The CDR and ISNT rules are the indispensable basis for
clinical diagnosis of glaucoma. The CDR value of the normal
eye is found to be 0.3 to 0.5 [29] and it will increase with the
aggravation in neuroretinal degeneration. Therefore, the rising
CDR value suggests an increased risk of glaucoma. Besides,
healthy eye structure conforms to the INST rule; otherwise,
glaucoma may occur.

Based on the above domain knowledge, the following geo-
metric features were selected as our clinical measurement fea-
tures: the vertical CDR and horizontal CDR, OC area, OD
area, NRR area, and area ratio of NRR to OD. Figure 8 shows
the clinical measurement features.

In accordance with the ISNT rule, the region of NRRwhich
fall in the ISNT four quadrants are respectively named as
inferior NRR (INR) (see Fig. 8c), superior NRR (SNR) (see
Fig. 8d), nasal NRR (NNR) (see Fig. 8e), and temporal NRR
(TNR) (see Fig. 8f). The area, thickness, and area ratio to OD
of the four regions were calculated as the distinguishing char-
acteristics of glaucoma. Besides, the area and thickness ratios
between these areas are also important for the inspection of the
ISNT rule. Figure 8 shows an illustrative example.
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2.5 IFOV feature model

We propose the increasing field of view (IFOV) feature model
to extract the image-based features. In the IFOV model, there
are four visual fields with different scales, ranging from small
to large: OC region, OD region, ROI, and global fundus im-
age; various hidden visual features are extracted from Gabor
transform and GLCM that applied to these regions. As can be
seen in Fig. 9, the field of vision is increasing, according to the
order in which the ophthalmologist observes the lesion. Thus,
image features at different levels can be extracted. The extract-
ed features possess wide coverage and representative ability,
providing more evidence for glaucoma detection.

2.5.1 GLCM feature

GLCM is a second-order statistical measure method used to
analyze image texture features. It describes the appearance
frequency of different gray-scale value combinations in an
image and measures the relationship between neighborhood
pixels in four angles (θ = 0°, 45°, 90°, 135°). For the image of
size m × n, the Cd (i, j) for GLCM can be written as

Cd i; jð Þ ¼ p; qð Þ; pþΔx; qþΔyð Þ :
I p; qð Þ ¼ i; I pþΔx; qþΔyð Þ ¼ j

�
ð3Þ

where (p, q), (p +Δx, q +Δx) ∈ m × n.Δx andΔy are offset

Fig. 6 OD and OC segmentation result. a Original ROI image. b OC segment result of our network. c OD segment result of our network. d Our
network’s visualized fusion result. e OC segment result of ground truth. f OD segment result of ground truth. g Ground truth’s visualized fusion results

Fig. 7 Flowchart of the feature extraction
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values which are ranged from 1 to 6 to evaluate pixel adjacen-
cy at different scales. The probability of pixel adjacency Pd (i,
j) is defined as

Pd i; jð Þ ¼ Cd i; jð Þ
∑Cd i; jð Þ ð4Þ

In our work, the GLCM features, i.e., entropy, dissimilar-
ity, inverse different moment (IDM), and angular second mo-
ment (ASM) are selected for glaucoma classification. These
features are mathematically formulated as

entropy ¼ − ∑
m

i¼1
∑
n

j−1
Cd i; jð ÞlogCd i; jð Þ ð5Þ

dissimilarity ¼ ∑
m

i¼1
∑
n

j−1
Cd i; jð Þ* i− jj j ð6Þ

IDM ¼ ∑
m

i¼1
∑
n

j−1

Cd i; jð Þð Þ2
1þ i− jð Þ2 ð7Þ

ASM ¼ ∑
m

i¼1
∑
n

j¼1
Cd i; jð Þð Þ2 ð8Þ

The above features are extracted from the four receptive
fields, i.e., OC region, OD region, ROI, and global fundus
image. By adjusting the angle and offset value, a total of
384 GLCM features can be obtained per fundus image.

Fig. 8 Clinical measurements feature illustration. The upper row is an example of non-glaucoma, and the lower row is glaucoma. aOriginal ROI image.
b Visualized fusion result of OC and OD segmentation. c INR. d SNR. e NNR. f TNR

Fig. 9 The illustration of the IFOV feature model
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2.5.2 Gabor feature

Gabor transform refers to the convolution operation of Gabor
filter kernel and the image to obtain multi-scale and multi-
direction amplitude domain maps. Thus, it can extract struc-
tural information of a specific frequency and direction [30].
Gabor filters can achieve local optimization in both the spatial
and frequency domains, and they can describe local informa-
tion efficiently. The Gabor filter is represented as

gabor f ;σ;θ;γ x; yð Þ ¼ exp −
x
02 þ γ2y

02

2σ2

 !
*exp i2πfxð Þ ð9Þ

x
0 ¼ xcosθþ ysinθ y

0 ¼ ycosθ−xsinθ ð10Þ

In order to extract comprehensive feature information,
we construct a complete set of Gabor filters by chang-
ing the Gabor kernel parameters. These parameters in-
clude two different frequencies, four different orienta-
tions (θ = 0°, 45°, 90°, 135°), five different γ values
(0.25, 0.5, 1, 2, 4), and four different Gabor scales
(σ = 1, 3, 5, 7). The two frequencies (f = 1.1781,
2.3562) are given by [16]. The average value and ener-
gy of the Gabor transform coefficients are extracted for
glaucoma classification. Thus, a total of 1280 Gabor
features can be obtained for a fundus image, and the
number of features of different types can be seen in
Table 1.

2.6 Feature selection and ranking

In our method, a total of 1688 original features were
extracted, such redundant features may lead to low com-
putational efficiency and depreciation of classifier per-
formance. Therefore, the dimension reduction and selec-
tion of features are crucial. To obtain the best classifi-
cation performance based on the fewest features, multi-
ple feature selection methods are used to determine the
best feature combination in this work.

Step 1. We employ the variance analysis to remove features
with extremely low variance since the values of these
features are approximately the same or basically con-
stant, and they contribute little to the classification of
glaucoma. We set the variance threshold of

discarded features to 0.001, which can filter out most
low-variance features and improve computational ef-
ficiency without reducing performance.

Step 2. Pearson correlation coefficient is employed to
measure the correlation between two features.
In our work, we define two features with an
absolute value of the Pearson correlation coef-
ficient greater than 0.9 as extremely correlated
features. The redundant features will be deleted
since these features have little contribution to
the classification, affect computing efficiency,
and even reduce classification accuracy. The
heatmap of the feature’s correlation matrix is
shown in Fig. 10.

Step 3. After variance and correlation analysis, the
feature redundancy still exists and has a great
impact on the construction of the glaucoma
classifier. To achieve the best classification
accuracy with the least number of features, it
is necessary to sort the entire feature set and
select important feature subsets. Thus, we
compare the three different candidate feature
ranking methods, i.e., chi-square ([χ2]) [31],
mutual information [32, 33], and GBDT [34,
35]. In the chi-square method, the importance
of a feature is estimated by computing the
value of its χ2 statistic. Mutual information
is used to measure the degree of interdepen-
dence between two variables and calculate
content information shared between them.
The importance of features is measured by
mutual information. GBDT is an integrated
model of decision trees, which can be effec-
tively applied to tasks, such as regression,
classification, and feature ranking. When
GBDT is used for feature ranking, it evaluates
the importance of features based on the reduc-
tion of impurities after node splitting and then
ranks the features according to the impor-
tance. Mean square error (MSE) is adopted
for measuring the impurity of the dataset.

The combination of features based on different rank-
ing methods will greatly affect the performance of the
classifier. To find the best feature ranking method and
feature combination, we use different methods to rank
all candidate features and select some of the top-ranked
features to train the classifier. By continuously increas-
ing the number of top-ranked features, we can compare
the accuracy of the classifiers to determine the best
feature ranking method and feature combination.

Table 1 Number of different features

Type Clinical features GLCM features Gabor features Total

Number 24 384 1280 1688

Med Biol Eng Comput



2.7 Adaptive synthetic sampling approach

An imbalanced dataset refers to the extremely uneven
sample size of each category in the dataset. The samples
of the majority class occupy too much proportion in the
total samples, and the minority class samples are ignored.
Therefore, the trained classifier has a bias for the majority
class, which will cause an obvious degradation in classi-
fication performance. In this paper, the dataset used in the
experiment has the problem of uneven sample distribu-
tion. For example, the ratio of normal and glaucoma fun-
dus images in the ORIGA [36] dataset is 482:168. In
order to reduce the imbalance of the sample distribution,
we employ the ADASYN [26] algorithm. This algorithm
generates new feature samples adaptively for minority
class based on the features extracted from minority ethnic
samples, minimizing the feature sample differences be-
tween normal and glaucoma classes as much as possible.
The ADASYN algorithm for glaucoma classification
problem is described in algorithm 1.

Experimental results show that the imbalance of feature
samples between normal and glaucoma is greatly relieved
and the classifier achieves better performance.

Fig. 10 Heatmap of feature
correlation matrix
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2.8 Classifier setting

We compare SVM, random forest (RF), and GBDT classifiers
to select the best method for the automated glaucoma diagno-
sis based on the selected features.

SVM is a widely used supervised learning tool. It can
realize classification by projecting features into space to find
the best classification hyperplane. Kernel functions can be
employed to map feature points which cannot be distin-
guished linearly to a higher dimensional space where these
feature points can be linearly separated.According to [5], we
use radial basis kernel function for glaucoma detection. The
SVMmodel has two important hyperparameters:C and gam-
ma. C is the penalty coefficient, and gamma affects the num-
ber of support vectors. From the experiment of adjusting
parameters, we find that setting C to 150 and gamma to
0.001 can obtain the best glaucoma classifier performance.

As an integrated learning method, Random forest (RF) is
also a variant of the bagging algorithm. It can randomly es-
tablish a large number of decision trees which are not related
to eachother, the input samples are classified according to the
decision-making situation of each decision tree in the forest.
RF has the ability to analyze the complex interactive features
and can maintain robustness in the presence of noisy data.
The number of decision trees is an important parameter in the
RF model. If the decision trees are insufficient, the fitting
ability of the RF model will be weakened. However, too
many decision trees will increase the calculation and lead to
overfitting. Therefore, we keep the number of decision trees
to be moderate, namely 50.

Unlike random forests, GBDT [34] is an integrated learn-
ing algorithm that combines decision trees with boosting
method. It adopts the gradient descent method to optimize
the loss function in the function space. Besides, the regression
idea is possessed by the GBDT algorithm, which makes it
capable of processing complex data. The determination of
the decision tree number in the GBDT model is similar to that
of the RFmodel, so we choose 50 decision trees as a moderate
choice.

3 Experiments and results

The proposed glaucoma detectionmethod is evaluated in three
aspects: OD and OC segmentation, feature ranking and selec-
tion, and glaucoma classification performance assessment.
Three datasets are used to evaluate these parts: ORIGA [36],
RIGA [37], and DRISHTI-GS1 [38].

The ORIGA [36] dataset consists of 650 color fundus im-
ages and their glaucoma diagnosis results, and the segmenta-
tion labels of OD and OC are also provided. Thus, the ORIGA
dataset is used to assess the performance of OD and OC seg-
mentation and glaucoma detection.

The RIGA [37] provides 750 color fundus images gathered
from three resources, including the MESSIDOR dataset [39],
Magrabi Eye Center [37], and Bin Rushed Ophthalmic Center
[37]. Besides, the RIGA dataset also provides the boundaries
of OD and OC labeled by six experienced clinical ophthal-
mologists. Thus, the RIGA dataset is adopted to verify the
performance of OD and OC segmentation.

To further evaluate the accuracy of our proposed glaucoma
detectionmethod, the comparison experiment with other state-
of-art methods was conducted based on the DRISHTI-GS1
[38] dataset which contains 101 color fundus images.

3.1 Evaluation metrics

For OD andOC segmentation performance, we compute over-
lap coefficient S, the balanced accuracy Acc and absolute
CDR error as evaluation measurements. The overlap coeffi-
cient S denotes the overlap level of two regions which can be
defined as:

S A;Bð Þ ¼ Area A∩Bð Þ
Area A∪Bð Þ ð17Þ

where S ∈ [0, 1], and higher S value implies a better segmen-
tation performance. A refers to the ground truth mask, and B
represents the predicted mask. Area (.) denotes the region
area. ∩ refers to the intersection and, ∪ refers to the union
operation.

Table 2 Segmentation evaluation results on ORIGA dataset

Method Overlap coefficient
of OD (SOD)

Balanced accuracy
of OD (AccOD)

Overlap coefficient
of OC (SOC)

Balanced accuracy
of OC (AccOC)

Absolute CDR error
(δCDR)

Superpixel [14] 0.898 0.964 0.736 0.918 0.077

DeepCDR [21] 0.929 0.983 0.770 0.930 0.071

U-Net [27] 0.925 0.965 0.756 0.914 0.090

UNet++ [24] 0.926 0.973 0.777 0.928 0.070

CP-UNet++ 0.947 0.976 0.805 0.928 0.062

FD-UNet++ 0.948 0.971 0.802 0.935 0.062

Proposed 0.960 0.976 0.813 0.943 0.061
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The balanced accuracy Acc which consists of sensitivity
and specificity is also adopted. They are defined as:

Acc ¼ Sensitivityþ Specificity

2

Sensitivity ¼ TP

TPþ FN
ð18Þ

Specificity ¼ TN

TNþ FP

where TP, TN, FP, and FN denote true positives, true nega-
tives, false positives, and false negatives, respectively.

Extracting clinical measurement features, especially CDR,
is the purpose of OD and OC segmentation. The quality of the
segmentation directly affects the accuracy of glaucoma
screening. Therefore, we adopted the absolute CDR error to
measure the performance of segmentation, which is defined as

δCDR ¼ CDRA−CDRBj j ð19Þ
where CDRA refers to the ground truth CDR, and CDRB is the
CDR calculated by our proposed CP-FD-UNet++ model.

3.2 OD and OC segmentation evaluation

We have conducted an experimental evaluation for OD and
OC segmentation from three aspects:

1 Segmentation performance based on quantitative
assessment

2 Quantitative assessment based on different classification
algorithms

3 Quantitative assessment based on different datasets

Fig. 11 Comparison of ground
truth CDR and predicted CDR. a
Scatter plot of the CDR on the
two datasets. b Bland-Altman
diagram

Table 3 Segmentation evaluation results on RIGA dataset

Dataset Method Overlap coefficient
of OD (SOD)

Balanced accuracy
of OD (AccOD)

Overlap coefficient
of OC (SOC)

Balanced accuracy
of OC (AccOC)

Absolute CDR error
(δCDR)

BinRushed [37] DeepCDR [21] 0.845 0.923 0.727 0.936 0.060

U_Net [27] 0.940 0.967 0.771 0.929 0.062

UNet++ [24] 0.944 0.970 0.786 0.933 0.057

Proposed 0.957 0.972 0.829 0.947 0.046

Magrabia [37] DeepCDR [21] 0.882 0.942 0.709 0.906 0.063

U_Net [27] 0.942 0.965 0.784 0.939 0.060

UNet++ [24] 0.935 0.960 0.770 0.956 0.052

Proposed 0.937 0.965 0.830 0.959 0.047

MESSIDOR [39] DeepCDR [21] 0.826 0.913 0.624 0.931 0.074

U_Net [27] 0.921 0.969 0.782 0.933 0.060

UNet++ [24] 0.910 0.970 0.804 0.925 0.058

Proposed 0.938 0.978 0.822 0.957 0.030
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We compare the proposed segmentation method with other
state-of-the-art methods: superpixel method [14], U-Net [27],
UNet ++ [24], and deepCDR [21]. To confirm the effective-
ness of our proposed connection path and FD loss designs for
OD and OC segmentation, we combine them with UNet++
separately and conduct relevant comparative experiments.
Besides, two different datasets, i.e., ORIGA dataset [36] and
RIGA dataset [37] are used to evaluate the robustness of the
segmentation method. We randomly select 50% samples from
different datasets as the training set and the remaining 50% as
the test set. The ADAM method is adopted to optimize the
network, and cosine annealing method is used to adjust the
learning rate for it can help the model jump out of the local
best point and obtain better performance. Besides, horizontal
flip, random rotation, and color jitter are used to augment the
training image, which can greatly improve the performance of
the model and avoid overfitting.

Table 2 and Table 3 show the segmentation results of the
ORIGA dataset [36] and the RIGA dataset [37], respectively.
All evaluation results are the average of the test set samples.
Results on both tables illustrate that our proposed method can
achieve the best results for most indexes in different datasets.
Besides, the OC segmentation performance of our model is
greatly superior to several other methods, which indicates that
the CP-FD-UNet++ model can ease the impact of data imbal-
ance effectively, and the model focus on the samples that
difficult to distinguish. Table 2 shows that two improved ver-
sions of U-Net++, i.e., CP-UNet++ and FD-UNet++ based on
connection path and FD loss proposed by our work, can con-
tribute to the improvement of segmentation performance.

The correspondence of ground truth CDR and the predicted
CDR in all datasets is shown in the scatter plot (see Fig. 11a).
Besides, we use the Bland-Altman method to further measure
the consistency of the ground truth CDR and the predicted
CDR, as shown in Fig. 11b. The Bland-Altman method uses

the mean of the data as the horizontal axis and the difference
as the vertical axis to make a scatter plot. It calculates the 95%
distribution range of the difference as the limits of agreement
(LoA) and then compares the distribution of scattered points
within LoA. Specifically, the lower limit of the LoA is the
mean difference minus 1.96 times standard deviation (SD)
of the difference, and the upper limit is the mean difference
plus 1.96 times SD of the difference. It can be seen from the
results that 4.98% of the difference points exceed the LoA,
and 95.02% of the samples are within the consistency limit,
indicating that the CDR calculated based on our proposed
model is very close to ophthalmologist’s prediction.

3.3 Feature ranking and selection evaluation

To obtain the best feature combination for glaucoma classifier,
we conduct comparison experiments based on different

Fig. 14 The performance results obtained using GBDT ranking method

Fig. 13 The performance results obtained using mutual information
ranking method

Fig. 12 The performance results obtained using chi-square ranking
method
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feature ranking methods by adjusting the number of top-
ranked features. Balance accuracy of the glaucoma classifiers
is considered to be the assessment criteria of the combination
of different feature ranking methods and the most important
feature quantities. In our case, the classifiers are the SVM, RF,
and GBDT and their combination with data balancing algo-
rithm ADASYN. Comparative experiments are performed
using the ORIGA dataset [36]. The performance results ob-
tained by chi-square, mutual information, and GBDT ranking
methods are shown in Fig. 12, Fig. 13, and Fig. 14.

The average comparison results of different ranking
methods and feature numbers are shown in Table 4. The re-
sults show that no matter which feature ranking method is
chosen, the best classification accuracy can be obtained by
using the GBDT+ADASYN classifier. Besides, when the
GBDT+ADASYN classifier is combined with the GBDT
ranking method, the best classification performance can be
achieved with the minimum number of the most important
features. Therefore, the 13 most significant features by using
the GBDT ranking method were selected, and their impor-
tance ranking is shown in Fig. 15.

A total of 1688 original features are reduced to 13 without
affecting the accuracy of classification, which also greatly
improves the efficiency of the classification system. From
Fig. 15, we can clearly see that CDR achieves the highest
importance score, which indicates that it is indispensable for
the glaucoma screening. Some clinical measurement features
related to Neuroretinal rim are also important to the classifi-
cation. GLCM andGabor features are considered to contribute
greatly to the screening of glaucoma because they can

discover hidden information related to glaucoma diagnosis.
Besides, the OC region, OD region, ROI, and global images
all contribute to the extraction of unstructured features, indi-
cating that the proposed IFOV feature model plays an impor-
tant role in the glaucoma classification.

3.4 Glaucoma classification evaluation

Since the balance accuracy of the classifier has been verified
in the feature selection step, to comprehensively evaluate the
classification performance of different classifiers, we also
adopt three other evaluation criteria: sensitivity, specificity,
and area under the ROC curve (AUC). Quantitative assess-
ment is performed on ORIGA [36] and DRISHTI-GS1 [38]
datasets. The glaucoma samples are defined as positive while
the normal samples are defined as negative. Then, sensitivity
and specificity are calculated according to Eq. 18.We conduct
experiments on different datasets separately and randomly
select 50% from each dataset as the training set, and the re-
maining 50% as the testing set.

The average quantitative assessment results for glaucoma
screening of various classifiers are shown in Table 5, and the
ROC curves are shown in Fig. 16. From Table 5, we can see
that all these classifiers without ADASYN can obtain high
specificity but low sensitivity. That is because the distribution
of training samples is extremely uneven which can cause se-
vere predictive bias of the classifiers and leads to many glau-
coma samples being misdiagnosed as normal. Thus, the data
balancing strategy is important for glaucoma screening perfor-
mance. As a result, GBDTwith the ADASYNmethod obtains

Fig. 15 Ranking of feature
importance. For more details
about the features, please see
Table 9 in Appendix

Table 4 The performance result
comparison of different ranking
methods

Ranking method Best classifier Number of the most important features Balance accuracy

GBDT GBDT+ADASYN 13 0.843

Mutual Information GBDT+ADASYN 17 0.835

Chi2 GBDT+ADASYN 16 0.833
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the highest sensitivity, Acc, and AUC. Besides, it also
achieves the best specificity among the methods that use data
balancing strategies and attains the best performance.

3.5 Discussion

3.5.1 Comparison with different algorithms

In order to test the superiority of the proposed glaucoma
screening method, some of the latest glaucoma screening
methods—deepCDR [21] and wavelet-based method
(Wavelet) [40]—were adopted to compare against GBDT+
ADASYN. For the deepCDR method [21], a deep learning
architecture, named M-Net, is proposed to solve the OD and
OC segmentation, and the glaucoma screening is conducted
based on the calculated CDR value. Wavelet-based method
extracts statistical moments or entropy as features using the
wavelet transform, and SVM is employed for glaucoma clas-
sification. Besides, we also compared the methods using
Gabor transform [16] and GLCM [41], separately. These
methods diagnose glaucoma by hidden statistical information
without clinical measurement features. Table 6 shows the av-
erage comparison results of the classification performance on
the ORIGA dataset, and the ROC curves of different methods
are shown in Fig. 17.

From the result, we can deduce that the statistical features
extracted based on a single transform cannot achieve satisfac-
tory Acc and specificity, so the features obtained by these
methods cannot effectively describe the characteristics of
glaucoma and lack certain discrimination. DeepCDR method
using CDR can achieve satisfactory performance with 0.791
Acc, 0.865 AUC, and the highest specificity, which outper-
forms wavelet-based, Gabor, and GLCM-based methods. For
the proposed GBDT+ADASYN method, clinical measure-
ment features, hidden statistics features, and texture features
are adopted for glaucoma detection, and it obtains the best
overall performance, which has a 6.6% improvement on
Acc, a 14.6% improvement on sensitivity, and a 5.5% im-
provement on AUC than deepCDR. Figure 18 compares the
ranking results of the evaluation indicators of different
methods. Although the specificity of the proposed method is

not the highest, it is very close to deepCDR and greatly supe-
rior to other algorithms. Therefore, our proposed method is
much superior to state-of-the-art methods and obtains the most
reliable performance using the ORIGA dataset.

Besides, we perform comparative experiments based on
another dataset DRISHTI-GS1 [38] to further verify the
robustness of the proposed glaucoma screening method.
Table 7 shows the average classification performance com-
parison of different algorithms on DRISHTI-GS1. From
the table, we can see that the proposed method can obtain
the highest specificity, Acc, and AUC, which has 32.9%,
11.6%, and 12.2% improvement than deepCDR. We also
find that although deepCDR achieves the highest sensitiv-
ity, the specificity was extremely low, indicating that
deepCDR does not work well on DRISHTI-GS1 datasets;
thus, the robustness of DeepCDR is unsatisfactory.

Figure 19 shows the ROC curves of different methods,
and Fig. 20 shows the ranking results of different methods
according to the evaluation indicators. These results show
that the proposed glaucoma detection method has excel-
lent sensitivity, specificity, Acc, and AUC using the
DRISHTI-GS1 dataset. Therefore, the proposed method
can be effectively applied to different datasets with

Table 6 Performance measures of different methods using ORIGA
dataset

Method Sensitivity Specificity Acc AUC

DeepCDR [21] 0.780 0.803 0.791 0.865

Wavelet [40] 0.882 0.668 0.774 0.834

Gabor [16] 0.788 0.735 0.746 0.800

GLCM [41] 0.794 0.714 0.754 0.771

Proposed 0.894 0.793 0.843 0.913

Fig. 16 ROC curves of different classifiers on ORIGA dataset

Table 5 Classification results of different classifiers on ORIGA dataset

Method Sensitivity Specificity Acc AUC

RF 0.526 0.908 0.732 0.862

SVM 0.487 0.880 0.693 0.808

GBDT 0.539 0.903 0.735 0.838

RF+ADASYN 0.844 0.774 0.809 0.842

SVM+ADASYN 0.849 0.747 0.797 0.850

GBDT+ADASYN 0.894 0.793 0.843 0.913
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excellent robustness and its comprehensive performance
is superior to the state-of-the-art algorithm.

It can be seen from the experimental results that glau-
coma screening using clinically measured features can
achieve good results, but its accuracy is limited to a
certain extent, and it is difficult to meet the needs of
clinical diagnosis. The reason is that the method ignores

other valuable hidden evidence in the fundus image,
namely texture and statistical features. The glaucoma de-
tection method based on texture or statistical characteris-
tics can achieve excellent sensitivity, but it cannot be
applied to clinical diagnosis because of its low specific-
ity. Therefore, in our method, the above two different
kinds of features are combined.

In terms of extracting image-based features, we proposed
the IFOV feature model to extract GLCM and Gabor trans-
form features from different receptive fields and fully quantify
hidden evidence related to glaucoma. In addition, we combine
clinical measurement features related to CDR, NRR, and

Table 7 Performance measures of different methods using DRISHTI-
GS1 dataset

Method Sensitivity Specificity Acc AUC

DeepCDR [21] 0.938 0.581 0.750 0.813

Wavelet [40] 0.876 0.648 0.760 0.767

Gabor [16] 0.939 0.588 0.781 0.807

GLCM [41] 0.844 0.643 0.743 0.808

Proposed 0.904 0.772 0.837 0.912

Fig. 18 Ranking results of
different methods using ORIGA
dataset. a Sensitivity ranking
result. b Specificity ranking
result. c Acc ranking result. d
AUC ranking result

Fig. 17 ROC curves of different methods using ORIGA dataset
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ISNT rules with image-based features to enhance the perfor-
mance of the classifier.

Furthermore, we use the ADASYN method to solve
the problem of data imbalance, which also greatly im-
proves the specificity and sensitivity of our classifica-
tion model. Experimental results show that our proposed
method has the best glaucoma screening performance
compared wi th the methods tha t use c l in ica l

measurement features, such as CDR alone or the
methods with a single transform feature model.

3.5.2 Running time

The OC and OD simultaneous segmentation task is imple-
mented on the NVIDIA RTX 2080 Ti GPU, and the training
phase using the ORIGA dataset takes about 1 h. Besides, the
algorithm needs to extract a large number of raw features for
analysis and comparison during the feature selection stage, so
this process is a little time-consuming. However, the processes
of the model training and feature selection can be done offline;
their calculation time will not affect the clinical use of the
system. Therefore, we compare the time required of the com-
plete test phase including OC and OD segmentation, extrac-
tion of selected image features, and glaucoma detection.
Specifically, the calculation time of OC and OD segmentation
is 0.42 s per image, and the calculation time of the selected
feature extraction and glaucoma screening stage is 0.19 s per
image. The average test time of a single fundus image of
different algorithms is shown in Table 8.

Since the proposed algorithm extracts multiple types of
features from different receptive fields, the time taken for
feature extraction is slightly longer than other algorithms.
But the proposed glaucoma detection method greatly

Fig. 20 Ranking results of
different methods using
DRISHTI-GS1 dataset. a
Sensitivity ranking result. b
Specificity ranking result. c Acc
ranking result. d AUC ranking
result

Fig. 19 ROC curves of different methods using DRISHTI-GS1 dataset
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surpasses other algorithms in AUC, accuracy, sensitivity,
and specificity. Besides, obtaining accurate glaucoma
screening result in 0.61 s is much more efficient than
clinical ophthalmologists, making it acceptable for clini-
cal diagnosis.

4 Conclusions

Anew automatic glaucoma screening algorithm is proposed in
this paper. Both clinically measured features and image-based
features are extracted to fully explore the evidence of
glaucoma.

To accurately extract clinical measurement features, we
propose a network that was called CP-FD-UNet++ to segment

the OD and OC simultaneously based on ROI. The network
uses a nested U-Net structure, and the input feature maps of
the encoders are cascaded to achieve multi-scale information
input and feature map sharing. The mixed loss function which
combines focal loss with dice coefficient is adopted to weaken
the imbalance between the target and the background. Based
on the accurate OD and OC segmentation results, clinically
measured parameters, such as CDR and NRR, can be obtain-
ed. Besides, we propose the IFOV model to fully extract hid-
den visual features. There are four visual fields with different
scales in the IFOVmodel: OC area, OD area, ROI, and global
fundus image. Various texture and statistical features are ex-
tracted from Gabor transform and GLCM that applied to these
areas. All features are used to train a GBDT classifier after
being ranked and selected. The combination of clinical mea-
surement features and hidden texture and statistical features
can obtain abundant evidence for glaucoma discrimination
and greatly improve the accuracy of glaucoma screening clas-
sifier. Experimental results on the ORIGA and DRISHTI-GS1
datasets show that compared with other existing methods, our
glaucoma screening method can generally achieve better re-
sults in accuracy, sensitivity, specificity, and AUC. Thus, the
proposed method can be regarded as a suitable and reliable
method for automatic glaucoma screening in a variety of clin-
ical settings.
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Appendix

The description of the features after ranking and selected in
Fig. 15 can be seen in Table 9
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